Buscar

Cargando...

miércoles, 19 de mayo de 2010

miércoles, 17 de febrero de 2010

experimentos cientificos



1. Difracción de electrones mediante doble rendija


El físico francés Louis de Broglie propuso en 1924 que los electrones y otros elementos discretos de materia, que hasta entonces se concebían sólo como partículas de materia, tenían también propiedades tales como la longitud de onda y la frecuencia. Más tarde (en 1927) la naturaleza de onda de los electrones fue demostrada experimentalmente por C. J. Davisson y L. H. Germer en Nueva York y por G. P. Thomson en Aberdeen (Escocia).
Para explicar la idea, a los demás y a si mismos, los físicos usan frecuentemente un meditado experimento, en el cual se repitió el experimento previo de Young de la doble rendija usando esta vez un haz de electrones en lugar de un haz de luz. Cumpliendo con la leyes de la mecánica cuántica, el chorro de partículas se dividiría en dos, y los chorros más pequeños interferirían entre si, dejando el mismo patrón de luz-oscuridad que se obtuvo con el experimento de luz. Las partículas actuarían como ondas. De acuerdo con un artículo de la publicación "Physics World", del editor de la revista Peter Rodgers, no fue hasta 1961 cuando alguien (Claus Jönsson de Tübingen) llevó a cabo el experimento en el mundo real.

2. Experimento de Galileo sobre caída de objetos


A finales de 1500 todo el mundo sabía que los objetos pesados caían más rápido que los más ligeros. Después de todo, Aristóteles lo había dicho. Que los pupilos del anciano Griego todavía sostuvieran tal regla fue un claro signo de cuanto había decaído la ciencia durante las épocas oscuras.Galileo Galilei, que poseía una cátedra en Matemáticas en la Universidad de Pisa, fue lo suficientemente descarado para cuestionarse el saber común. La historia se ha convertido en parte del folclore de la ciencia: el tiene fama de haber lanzado dos pesos distintos de la torre inclinada de la ciudad mostrando que ellos aterrizaban al mismo tiempo. Su reto a Aristóteles le costó a Galileo su trabajo, pero él había demostrado la importancia de considerar la naturaleza, no la autoridad humana, como juez final en materia de ciencia.

3. El experimento de la gota de aceite de Millikan


El experimento de la gota de aceite fue la primera medida directa y convincente de la carga eléctrica de un único electrón. Fue realizado originalmente en 1909 por el físico americano Robert A. Millikan. Usando un atomizador de perfume, él roció con minúsculas gotas de aceite un recipiente transparente. Arriba y abajo había discos metálicos conectados a una batería, siendo uno positivo (rojo en la animación) y el otro negativo (azul en la animación). Como cada gotita, adquirió una pequeña carga de electricidad estática cuando viajaba a través del aire, la velocidad de su movimiento podía ser controlada mediante el cambio del voltaje en los discos. Cuando el espacio entre los discos metálicos está ionizado por radiación (por ejemplo rayos X), los electrones del aire se enlazan a las gotitas de aceite dotándolas de carga negativa. Millikan observó una gota tras otra cambiando el voltaje y tomando nota del efecto. Tras muchas repeticiones concluyó que la carga sólo puede tener ciertos valores fijos. La más pequeña de esas porciones no fue otra que la carga de un único electrón.

4. Descomposición de la luz solar mediante un prisma de Newton


Isaac Newton nació el año que murió Galileo. Graduado por el Trinity College en Cambridge en 1665, estuvo escondido en casa durante un par de años esperando el fin de la plaga. No tuvo problemas para mantenerse a si mismo ocupado.El saber común sostenía que la luz blanca era la forma más pura (otra vez Aristóteles) y que la luz coloreada tenía por tanto que ser alterada de alguna forma. Para probar esta hipótesis, Newton dirigió un haz de luz solar a través de un prisma de cristal y mostró que esta se descomponía en un fundido espectral sobre la pared. La gente ya conocía los arcos iris, por supuesto, pero eran considerados sólo como preciosas aberraciones. En realidad, Newton concluyó, que eran esos colores - rojo, naranja, amarillo, verde, azul, añil, violeta y las graduaciones intermedias - los que eran fundamentales. Lo que parecía simple en su superficie, un haz de luz blanca, era bellamente complejo si uno lo miraba más detenidamente.

5. Experimento de Young de la interferencia de luz


Newton no tuvo siempre razón. Mediante varios argumentos, él había conducido a la principal corriente científica hacia la convicción de que la luz estaba compuesta únicamente de partículas en lugar de ondas. En 1803, Thomas Young, un médico y físico inglés, puso a prueba la idea. Young realizó un agujero en un obturador, lo cubrió con una gruesa pieza de papel punteada con pequeños agujeros de alfiler y usó un espejo para hacer pasar el delgado haz de luz a través de el. Entonces tomó un "trocito de una carta, de alrededor de una trigésima parte de pulgada de grosor (en torno a 0,847 milímetros)" y lo mantuvo de canto en el camino del haz, dividiéndolo en dos. El resultado fue una sombra que alterna bandas de claridad y oscuridad - un fenómeno que podría explicarse si los dos haces interaccionasen como ondas. Las bandas brillantes aparecen cuando dos crestas se superponen, reforzándose la una a la otra; las bandas oscuras indican el lugar donde un máximo coincide con un mínimo, neutralizándose el uno al otro.
La demostración fue repetida frecuentemente a lo largo de los años usando una carta con dos agujeros que dividía el haz. Esos experimentos, llamados de doble rendija, se convirtieron en el estándar para determinar la naturaleza ondulatoria - un hecho que fue especialmente importante un siglo después cuando comenzó la teoría cuántica.

6. El experimento de torsión de la barra de Cavendish


El experimento fue realizado en 1797-98 por el científico inglés Henry Cavendish. Él siguió un método prescrito y usó aparatos construidos por su compatriota el geólogo John Michell, el cual murió en 1793. El aparato empleado fue una balanza de torsión, esencialmente un alambre estirado que soporta pesos esféricos. La atracción entre los pares de pesos provocó un pequeño giro en el alambre, el cual permitía así calcular por primera vez el valor de la constante gravitacional G. El experimento se conoció popularmente cuando se intentaba pesar la Tierra, porque la determinación de G permitió el cálculo de la masa terrestre.

7. Medida de la circunferencia terrestre por Eratóstenes


En Syene (ahora Aswan), a unos 800 km (500 millas) al sureste de Alejandría en Egipto, los rayos del sol caen verticalmente al mediodía en el solsticio de verano. Erastóstenes, que nació en el año 276 antes de Cristo, observó que en Alejandría, el mismo día y a la misma hora, la luz solar formada un ángulo de unos 7º con la vertical. Asumió que la distancia al Sol era muy grande; sus rayos por tanto son prácticamente paralelos cuando alcanzan la Tierra. Dadas las distancias estimadas entre las dos ciudades, él fue capaz de calcular la circunferencia de la Tierra. La longitud exacta de las unidades (stadia) que usó son dudosas, y la precisión de sus resultados es por tanto incierta; Eratóstenes podría haber variado entre un 0.5 y un 17 por ciento del valor aceptado por los astrónomos modernos.

8. Experimento de Galileo con bolas rodantes sobre planos inclinados


Galileo continuó refinando sus ideas acerca de los objetos en movimiento. Tomó una tabla de 12 "cubits" de largo y medio "cubit" de ancho (alrededor de 20 pies por 10 pulgadas (unos 6 metros por 25 centímetros), un cubit equivale a una distancia de entre 17 y 22 pulgadas (entre 43 y 55 centímetros)) y realizó un surco tan derecho y poco pronunciado como fue posible, hacia abajo por el centro. Luego inclinó el plano e hizo rodar bolas de latón por ella, midiendo su descenso con un reloj de agua - un gran recipiente que se vacía a través de un delgado tubo en un vaso. Después de cada ejecución Galileo pesaría el agua que se había vertido - midiendo el tiempo transcurrido - y lo comparó con la distancia que la bola había recorrido.
Aristóteles habría predicho que la velocidad de una bola rodante sería constante: si doblamos el tiempo de descenso, doblaremos la distancia que recorre. Galileo fue capaz de demostrar que la distancia es en realidad proporcional al cuadrado del tiempo: dóblalo y la bola llegará cuatro veces más lejos. La razón es que está constantemente acelerado por la gravedad.

9. El descubrimiento del núcleo de Rutherford


Cuando Ernest Rutherford estuvo experimentando con radioactividad en la Universidad de Manchester en 1911, se creía generalmente que el átomo estaba formado por un triturado de elementos de carga eléctrica positiva con los electrones empotrados en él - el modelo de "pudín de ciruelas". Pero cuando Rutherford y su asistente dispararon diminutos proyectiles cargados positivamente, llamados partículas alfa, contra una fina lámina de oro, se sorprendieron al ver que un pequeño porcentaje de ellos rebotaban. Eso fue como si las balas hubieran rebotado. Rutheford calculó que en realidad los átomos no estaban tan triturados después de todo. La mayoría de la masa tenía que estar concentrada en un pequeño núcleo, ahora llamado así, con los electrones flotando a su alrededor. Con las enmiendas ofrecidas por la teoría cuántica, esta imagen del átomo permanece hasta hoy.

10. El péndulo de Foucault


El pasado año, cuando los científicos montaron un péndulo sobre el Polo Sur y lo observaron balancearse, estaban replicando una demostración realizada en París en 1851. Usando un cable de acero de 220 pies de largo (unos 67 metros), el científico francés Jean-Bernard-Léon Foucault suspendió una bola de 62 libras (unos 28 kilogramos) de hierro desde la cúpula del Panteón y lo puso en movimiento, balanceándolo. Para marcar su progreso el enganchó una aguja a la bola y colocó un anillo de tierra mojada en el suelo bajo él.
La audiencia observó con pavor como el péndulo inexplicablemente parecía rotar, dejando un trazo ligeramente distinto en cada balanceo. En realidad era el suelo del Panteón el que estaba ligeramente en movimiento, y Foucault había demostrado, de una forma más convincente que nunca, que la tierra gira sobre su eje. En la latitud de París, el trazo del péndulo completaría una rotación completa en el sentido horario cada 30 horas; en el hemisferio sur rotaría en sentido antihorario, y en el ecuador no rotaría nada. En el Polo Sur, como han confirmado los científicos de la era moderna, el periodo de rotación es de 24 horas.

experimentos tecnologicos



Experimento: Propuesta de Diseño de una Máquina Térmica de Alta Eficiencia


Se presenta el diseño de una maquina térmica de alta eficiencia, que reúne varias características orientadas a reducir el consumo, y que debido a sus características técnicas su campo de aplicación es muy amplio:


1.Presenta un máximo interés en el campo de la automoción, debido a su gran rendimiento y su adaptabilidad para funcionar de forma optima en diferentes condiciones de trabajo.


2.Aplicándolo a máquinas estáticas el interés se centra en la ausencia de vibraciones, buen rendimiento y poco desgaste del conjunto pistón-segmento-cilindro.


3.Debido a la ausencia de rozamientos entre pistón y cilindro, es de máximo interés para los compresores de refrigeración, pudiendo utilizar gases refrigerantes sin lubricantes. En este campo, la posibilidad de compresión variable, puede utilizarse para optimizar y regular dichos ciclos.


Experimento: Helicóptero en apoyo al medio ambiente


El proyecto desarrolla un sistema de visión en un helicóptero a escala, con ayuda a la estabilización en la captura de imágenes, que explora las plantaciones agrícolas a diferentes alturas y realiza un análisis multirresolucional de imágenes y diagnosticando con precisión las zonas dañadas de cultivo con precisión y en tiempo real. Como resultado se genera un mapa de fumigación georreferenciado, con el objetivo de que un vehiculo terrestre de fumigación pueda conocer las zonas que debe fumigar, y apoyar a la agricultura de precisión. La fumigación tradicional se realiza aplicando la misma cantidad de compuestos químicos a toda la superficie, lo que trae como consecuencia un derroche de compuestos químicos con el consecuente impacto ecológico.


Experimento: Localfeed


El proyecto trata de asociar de manera innovadora elementos y dinámicas típicas de la web2.0 con un especial interés por los entornos hiper-locales. Utiliza mapas (georreferenciación), feeds (sindicación) y tecnología wiki (colaboración), con el objetivo de crear un portal web donde visualizar todo tipo de informaciones y redes sociales locales, usando un mapa digital como interfaz. Localfeed quiere experimentar nuevas maneras de usar la sindicación, apostando por la georreferenciación y la integración de diferentes fuentes (feeds). Pretende catalizar en un mismo sitio (mapa) informaciones procedentes de páginas web externas y con formatos de los más diversos. Aprovechar la enorme cantidad de información que viaja en la red; organizarla, y georreferenciarla, para que sea más accesible y sobre todo más útil. La participación y colaboración estarán a la base de la dinamica con la que se editarán los feeds georreferenciados (que llamaremos local-feeds). Cada usuario registrado podrá editar los local-feeds. Editar un local-feeds quiere decir añadir un nuevo feed que se añade a otros existentes para formar un mismo local-feed.


Experimento: Detección y seguimiento de personas por visión artificial


Un sistema de seguridad basado en visión artificial debe ser un sistema robusto a la hora de detectar y seguir personas en cualquier entorno. El algoritmo desarrollado permite la detección de movimiento y su posterior seguimiento en diferentes entorno. Es capaz de funcionar tanto en interiores como en exteriores, lo que le hace utilizable tanto como para el control de jardines o parcelas como viviendas o industrias. En el vídeo se muestran diferentes ejemplos en diferentes entornos, tanto exteriores como interiores. Estos vídeos han sido proporcionados durante las conferencias PETS (Performance Evaluation of Tracking and Surveillance) y por el equipo de visión "Performance Evaluation of Surveillance Systems" de IBM. En estos vídeos se muestran situaciones difíciles para los sistemas de seguridad, como podrían ser oclusiones parciales de las personas o manejo de sombras. En los últimos fragmentos se ven vídeos de oficinas, en los cuales sillas y cajas ocultan a las personas, o aparecen sombras que pueden confundir a un algoritmo de detección de movimiento clásico. Además, estos vídeos incorporan color de fondo parecido al color de la ropa de las personas: blanco y negro, como los pantalones. Aún así, el sistema es capaz de seguir las personas aunque estén parcialmente ocluidas, con el fondo complicado e ignorando en gran medida los problemas que acarrean las sombras. Por otra parte, este sistema es capaz de considerar varios colores como posibles fondos, lo que permite evitar errores al moverse ramas de árboles, cerrarse o abrirse una puerta, etc. En el primer vídeo se muestra al principio como una rama de un árbol se mueve y la detecta en los primeros frames. Esta rama se sitúa en la parte izquierda de la imagen. Al poco tiempo, el sistema comprende que es un movimiento del fondo, con lo cual no es interesante para el sistema de seguridad, y lo ignora. Cabe igualmente resaltar que es un algoritmo capaz de actualizarse, de manera a considerar como fondo objetos inmóviles, como un nuevo coche aparcado en un aparcamiento o una nueva hoja dejada encima de una mesa. Esto se muestra en el segundo vídeo en exteriores, al aparecer un coche y aparcarlo. Éste desaparece rápidamente de las detecciones al ser considerado por el sistema como un nuevo objeto de fondo. De misma manera, el maletín en el fragmento "Galerías" se considera fondo al cabo de un tiempo. Este fragmento muestra igualmente el buen funcionamiento de los múltiples fondos. Una vez que la persona se lleva el maletín, vuelve a aparecer el color de la pared, pero no es considerado fondo por el algoritmo. El sistema se "acuerda" que ese color era un color considerado fondo. No considera que haya movimiento, por mucho que el color cambie al mover el maletín. Este algoritmo es pues el primer paso para un sistema integral de vigilancia, que con los datos de movimiento de los sujetos, a partir de ciertas reglas, podrá ser capaz de discernir entre actuaciones normales y de riesgo, así como estimar el peligro.


Experimento: Tornillo de Arquímedes


Construcción de la cóclea o Tornillo de Arquímedes, historia de su aplicación por los griegos, y su aplicación para elevar agua, arena o evacuación de aguas residuales.


Experimento: Tratamientos de coagulación/floculación


El objetivo de este experimento es mostrar la aplicación de una serie de operaciones de coagulación-floculación para la eliminación de partículas coloidales de muy pequeño tamaño que se pueden encontrar en un agua residual. De esta forma, el visitante evalúa cuál es la función del coagulante y el floculante, y las dosis óptimas de ambos para favorecer la formación de partículas sólidas sedimentables más grades.


Experimento: Conoce una E.D.A.R.


Observar una maqueta de una estación depuradora de aguas residuales.


Experimento: Depuradora de agua UAM


Maqueta de una depuradora de aguas para explicar su funcionamiento.


Experimento:
Cómo tallar una teja de escayola


Cómo tallar escayolas, un material sencillo que permite obtener formas diversas.


Experimento: Simulación virtual y pilotaje con visión estereoscópica 3D de aeromodelo convertiplano VTOL (avión-helicóptero) de última generación


Pilotar un aeromodelo de última generación mediante una emisora de radio control y frente a una pantalla donde, mediante las gafas oportunas, se visualiza el vuelo en visión estereoscópica 3D es una actividad realmente divertida. Pero también es algo más. Es una simulación virtual de gran realismo donde cada uno de los elementos que la hacen posible encierra algunos secretos y avanzada tecnología. El aeromodelo simulado es el aeroVertical VX-05, que es un convertiplano (VTOL), es decir una máquina capaz de volar como un avión y un helicóptero, según deseemos.











martes, 16 de febrero de 2010

tecnologia


1.NTRODUCCIÓN


Tecnología, término general que se aplica al proceso a través del cual los seres humanos diseñan herramientas y máquinas para incrementar su control y su comprensión del entorno material. El término proviene de las palabras griegas tecné, que significa 'arte' u 'oficio', y logos, 'conocimiento' o 'ciencia', área de estudio; por tanto, la tecnología es el estudio o ciencia de los oficios.
Algunos historiadores científicos argumentan que la tecnología no es sólo una condición esencial para la civilización avanzada y muchas veces industrial, sino que también la velocidad del cambio tecnológico ha desarrollado su propio ímpetu en los últimos siglos. Las innovaciones parecen surgir a un ritmo que se incrementa en progresión geométrica, sin tener en cuenta los límites geográficos ni los sistemas políticos. Estas innovaciones tienden a transformar los sistemas de cultura tradicionales, produciéndose con frecuencia consecuencias sociales inesperadas. Por ello, la tecnología debe concebirse como un proceso creativo y destructivo a la vez.


2.CIENCIA Y TECNOLOGÍA

Máquina de vapor
La introducción de la máquina de vapor llevó a numerosas invenciones en el transporte y la industria. Las máquinas de vapor convierten la energía térmica en mecánica, a menudo haciendo que el vapor se expanda en un cilindro con un pistón móvil. El movimiento alternativo del pistón se convierte en giratorio mediante una biela. Los primeros modelos se desarrollaron en 1690, aunque James Watt no diseñó la máquina de vapor moderna hasta 70 años después.
Enciclopedia Encarta
Dorling Kindersley
Tamaño completo
Los significados de los términos ciencia y tecnología han variado significativamente de una generación a otra. Sin embargo, se encuentran más similitudes que diferencias entre ambos términos.
Tanto la ciencia como la tecnología implican un proceso intelectual, ambas se refieren a relaciones causales dentro del mundo material y emplean una metodología experimental que tiene como resultado demostraciones empíricas que pueden verificarse mediante repetición. La ciencia, al menos en teoría, está menos relacionada con el sentido práctico de sus resultados y se refiere más al desarrollo de leyes generales; pero la ciencia práctica y la tecnología están inextricablemente relacionadas entre sí. La interacción variable de las dos puede observarse en el desarrollo histórico de algunos sectores.
En realidad, el concepto de que la ciencia proporciona las ideas para las innovaciones tecnológicas, y que la investigación pura, por tanto, es fundamental para cualquier avance significativo de la civilización industrial tiene mucho de mito. La mayoría de los grandes cambios de la civilización industrial no tuvieron su origen en los laboratorios. Las herramientas y los procesos fundamentales en los campos de la mecánica, la química, la astronomía, la metalurgia y la hidráulica fueron desarrollados antes de que se descubrieran las leyes que los gobernaban. Por ejemplo, la máquina de vapor era de uso común antes de que la ciencia de la termodinámica dilucidara los principios físicos que sostenían sus operaciones. Sin embargo, algunas actividades tecnológicas modernas, como la astronáutica y la energía nuclear, dependen de la ciencia.
En los últimos años se ha desarrollado una distinción radical entre ciencia y tecnología. Con frecuencia los avances científicos soportan una fuerte oposición, pero en los últimos tiempos muchas personas han llegado a temer más a la tecnología que a la ciencia. Para estas personas, la ciencia puede percibirse como una fuente objetiva y serena de las leyes eternas de la naturaleza, mientras que estiman que las manifestaciones de la tecnología son algo fuera de control (véase los apartados de este artículo Logros y beneficios tecnológicos, y Efectos de la tecnología).


3.LA TECNOLOGÍA EN LA ANTIGÜEDAD Y EN LA EDAD MEDIA


La tecnología ha sido un proceso acumulativo clave en la experiencia humana. Es posible que esto se comprenda mejor en un contexto histórico que traza la evolución de los primeros seres humanos, desde un periodo de herramientas muy simples a las redes complejas a gran escala que influyen en la mayor parte de la vida humana contemporánea. Con el fin de mantener la sencillez del siguiente resumen, se tratan con mayor detalle los desarrollos del mundo industrializado, pero también se incluyen algunos desarrollos de otras culturas.


1.La tecnología primitiva


Herramientas de caza y recolección
Estas herramientas muestran los métodos empleados por los cazadores-recolectores prehistóricos. A menudo se usaban trozos de corteza para guardar nueces y bayas, o como platos (arriba a la izquierda). Abajo a la izquierda se muestran reproducciones de aparejos de pesca y flechas empleados alrededor del 8000 a.C. Los mangos de madera de las herramientas para cortar y cavar (derecha) son reconstrucciones. Las azuelas y la herramienta para encender fuego que se muestra debajo son de sílex.
Enciclopedia Encarta
Dorling Kindersley
Tamaño completo
Los artefactos humanos más antiguos que se conocen son las hachas manuales de piedra encontradas en África, en el este de Asia y en Europa. Datan, aproximadamente, del 250.000 a.C., y sirven para definir el comienzo de la edad de piedra. Los primeros fabricantes de herramientas fueron grupos nómadas de cazadores que usaban las caras afiladas de la piedra para cortar su comida y fabricar ropa y tiendas. Alrededor del 100.000 a.C., las cuevas de los ancestros homínidos de los hombres modernos (véase Evolución humana) contenían hachas ovaladas, rascadores, cuchillos y otros instrumentos de piedra que indicaban que el hacha de mano original se había convertido en una herramienta para fabricar otras herramientas. Muchos miembros del reino animal utilizan herramientas, pero esta capacidad para crear herramientas que, a su vez, sirvan para fabricar otras distingue a la especie humana del resto de los seres vivos.
El siguiente gran paso de la tecnología fue el control del fuego. Golpeando piedras contra piritas para producir chispas es posible encender fuego y liberarse de la necesidad de mantener los fuegos obtenidos de fuentes naturales. Además de los beneficios obvios de la luz y el calor, el fuego también se usó para cocer cacharros de arcilla, fabricando recipientes resistentes que podían utilizarse para cocinar cereales y para la infusión y la fermentación.
La tecnología primitiva no estaba centrada solamente en las herramientas prácticas. Se pulverizaron minerales de color para obtener pigmentos, que se aplicaban al cuerpo humano, a utensilios de arcilla, a cestas, ropa y otros objetos. En su búsqueda de pigmentos, las gentes de la antigüedad descubrieron el mineral verde llamado malaquita y el mineral azul denominado azurita. Cuando se golpeaban estas menas, ricas en cobre, no se convertían en polvo, sino que se doblaban; se podían pulir, pero no partir. Por estas cualidades, el cobre en trozos pequeños se introdujo muy pronto en la joyería.
Estos pueblos también aprendieron que, si este material era forjado repetidamente y puesto al fuego, no se partía ni se agrietaba. Este proceso de eliminación de tensiones del metal, llamado recocido, fue introducido por las civilizaciones de la edad de piedra, sobre todo cuando hacia el año 3000 a.C. se descubrió también que la aleación de estaño y cobre producía bronce (véase Edad del bronce). El bronce no es sólo más maleable que el cobre, sino que también proporciona una mejor arista, una cualidad necesaria para objetos como hoces y espadas.
Aunque había depósitos de cobre en Siria y Turquía, en las cabeceras de los ríos Tigris y Éufrates, los mayores depósitos de cobre del mundo antiguo se encontraron en la isla de Creta. Con el desarrollo de barcos capaces de navegar para llegar a este recurso extremadamente valioso, Knósos (en Creta) se convirtió en un rico centro minero durante la edad del bronce.


1.Desarrollo de la agricultura

Herramientas agrícolas primitivas
El ser humano empezó a cultivar la tierra hace unos 10.000 años, con lo que abandonó el nomadismo y creó pueblos y ciudades. Estas herramientas agrícolas primitivas datan del año 6000 a.C. El hacha (abajo) servía para desbrozar, las hoces de pedernal (izquierda) para cosechar, una roca plana y una redondeada (centro) servían para moler el grano, y las láminas de arcilla perforadas (arriba derecha) es probable que sirvieran para ventilar los hornos de pan.
Enciclopedia Encarta
Dorling Kindersley
Tamaño completo
Cuando llegó la edad del bronce, las distintas sociedades distribuidas por cada continente habían conseguido ya varios avances tecnológicos. Se desarrollaron arpones con púas, el arco y las flechas, las lámparas de aceite animal y las agujas de hueso para fabricar recipientes y ropa. También se embarcaron en una revolución cultural mayor, el cambio de la caza y la recolección nómada a la práctica sedentaria de la agricultura.
Las primeras comunidades agrícolas surgieron al final de la glaciación más reciente (hacia el año 10.000 a.C.). Sus huellas pueden encontrarse en áreas muy lejanas entre sí, desde el sureste de Asia hasta México. Las más famosas se dieron en Mesopotamia (el Irak actual) en los valles de las riberas fértiles y templadas del Tigris y el Éufrates. El suelo de estas fértiles laderas se trabajaba con facilidad para plantar, y contaba con un gran número de árboles para obtener leña.
Prácticas agrícolas antiguas

Prácticas agrícolas antiguas
Este relieve de las paredes de la tumba de Nefer Sakkara muestra a trabajadores egipcios empleando herramientas rudimentarias de agricultura y ganadería.
Enciclopedia Encarta
Brian Brake/Photo Researchers, Inc.
Tamaño completo
Hacia el año 5000 a.C., las comunidades agrícolas se establecieron en muchas partes del mundo, incluidas las áreas conocidas hoy como Siria, Turquía, Líbano, Israel, Jordania, Grecia, y las islas de Creta y Chipre. Las sociedades agrícolas construyeron en estos lugares edificaciones de piedra, usaron la hoz para cosechar los cereales, desarrollaron un arado primitivo y mejoraron sus técnicas en el trabajo con metales. También comenzó el comercio de piedras. Hacia el 4000 a.C., la agricultura se extendió desde estos centros hacia el Oeste al río Danubio en Europa central, hacia el Sur a las costas del Mediterráneo de África (incluido el río Nilo), y hacia el Este hasta el valle del Indo.
El desarrollo de la cuenca del Nilo aportó otros avances tecnológicos. En ese valle, el río se inunda al comienzo de la primavera. Tuvo que desarrollarse un sistema de irrigación y canales para regar los cultivos durante las estaciones de cosecha, cuando la lluvia es insuficiente. La propiedad de la tierra tenía que determinarse cada año mediante un sistema de medición, ya que los marcadores de la propiedad se perdían con frecuencia con las inundaciones. Los valles del Tigris y el Éufrates presentaban otros problemas tecnológicos. Las inundaciones se producían después de la estación de cosecha, por lo que era necesario aprender la técnica de construir diques y barreras para las inundaciones.


2.Otros descubrimientos primitivos

Sello antiguo
Los sellos se emplean desde hace miles de años para cerrar acuerdos, registrar transacciones y validar documentos. Los primeros sellos —una de las formas más antiguas de impresión— eran piedras con un dibujo grabado, que se apretaban sobre arcilla blanda o cera para crear una marca distintiva y reproducible. Este sello de la India se considera característico de la época comprendida entre el 2300 y el 1750 a.C.
Enciclopedia Encarta
Dorling Kindersley
Tamaño completo
Para ayudar al transporte eficiente de minerales para la creciente industria del cobre se construyeron carros de dos ruedas (la rueda más antigua databa aproximadamente del año 3500 a.C. en Mesopotamia). Sin embargo, los medios de transporte más utilizados fueron los barcos de juncos y las balsas de madera, que surgieron primero en Mesopotamia y Egipto. Un resultado importante del mercado de la cerámica, los metales y las materias primas fue la creación de una marca o sello, que se usaba para identificar a los creadores o propietarios particulares.
La tecnología también comenzó a manifestar otro de sus efectos, una alteración mayor del entorno por la introducción de nuevas prácticas: por ejemplo, la demanda de leña condujo a la deforestación, y el pastoreo excesivo de ovejas y de ganado vacuno provocó que crecieran menos árboles nuevos en las tierras pobres de la región. Así, la doma de animales, la agricultura de monocultivo, la deforestación y las inundaciones periódicas llevaron a la aparición gradual de áreas desérticas.


2.El desarrollo de las ciudades

Pirámide escalonada
La pirámide escalonada del rey Zoser, de la III Dinastía de Egipto, se construyó en Sakkara alrededor de los años 2737-2717 a.C. Fue diseñada por Imhotep, el primer arquitecto conocido, posteriormente deificado por los egipcios. La pirámide —la primera tumba real monumental— es una de las estructuras egipcias de piedra más antiguas.
Enciclopedia Encarta
Bernard Cox/Bridgeman Art Library, London/New York
Tamaño completo
Después del año 4000 a.C. apareció una de las creaciones más complejas de la humanidad: la ciudad. Desde este punto de vista, la tecnología no puede describirse sólo en términos de herramientas simples, avances agrícolas y procesos técnicos como la metalurgia, ya que la ciudad es en sí misma un sistema tecnológico. Éste es un hecho evidente en los primeros símbolos escritos que se usaron para representar una ciudad: un círculo con redes de líneas que indicaban los primeros sistemas de transporte y comunicaciones.
La aparición de la ciudad hizo posible un excedente de alimentos y una abundancia de riqueza material que posibilitó la construcción de templos, tumbas y amurallamientos. La acumulación de metales preciosos, la construcción de murallas defensivas, y el control de los ejércitos y los sacerdotes aseguraron la ascendencia del rey, al que puede denominarse el primer tecnólogo urbano.
Vista aérea del centro de Atenas

Vista aérea del centro de Atenas
La simetría y el diseño geométrico tenían un papel importante en el urbanismo de la Grecia y Roma antiguas. Los urbanistas diseñaban de forma diferenciada zonas residenciales, comerciales, de recreo y religiosas, que distribuían equilibradamente por la ciudad. Con frecuencia las calles seguían el esquema de cuadrícula desarrollado por Hipódamo, el padre del urbanismo. Dicho esquema se ha conservado en muchas ciudades griegas modernas, como se ve en esta fotografía de Atenas.
Enciclopedia Encarta
UPI/THE BETTMANN ARCHIVE
Tamaño completo
Los zigurats de Mesopotamia y las pirámides de Egipto o México simbolizan el poder organizativo y la magnitud tecnológica de los primeros asentamientos urbanos.
La construcción de estas edificaciones y monumentos enormes, el crecimiento del mercado de los productos de metal y el desarrollo de los recursos acuíferos también llevó a una normalización de los sistemas de medida. En Mesopotamia, el codo se convirtió en el patrón de longitud. El tiempo se medía en Egipto con un calendario que dividía el ciclo anual de estaciones en meses y días (véase Arqueoastronomía).
El crecimiento de las ciudades también estimuló una necesidad mayor de escribir. Los egipcios mejoraron la tabla de arcilla, que era difícil de manejar, con la fabricación de un material similar al papel sobre el cual escribían con jeroglíficos. Este material se fabricaba utilizando la planta del papiro. Además, la ciudad provocó una nueva división del trabajo: el sistema de castas. Esta estructura proporcionaba seguridad, estatus social y ocio a la clase intelectual de los escribas, médicos, profesores, ingenieros, magos y adivinadores. Sin embargo, el ejército contaba con los mayores recursos.


3.El auge del ejército


Las primeras ciudades fueron también construidas dentro de murallas para defenderse; estaban organizadas para la batalla y la conquista. Los centros urbanos de Ur, Nippur, Uruk, Tebas, Heliópolis, Assur, Nínive y Babilonia fueron arsenales de armamento destructivo. El objetivo de una fuerza militar era devastar la ciudad de su enemigo. Ur, en Sumeria, no fue sólo una de las primeras grandes ciudades en alzarse (hacia el 4000 a.C.), sino que también fue una de las primeras destruidas (aproximadamente en el 2000 a.C.). De modo similar, en el valle del Indo, la gran ciudad de Mohenjo-Daro fue fundada sobre el 2500 a.C. y destruida hacia el 1700 a.C. por los ejércitos de carros del norte. El mismo ejemplo se repitió en Perú y en Ecuador hacia el año 1000 a.C. y más tarde en México y Centroamérica.
La tecnología militar del mundo antiguo de desarrolló en tres fases inconexas. En la primera fase, surgió la infantería con sus cascos de piel o de cobre, arcos, lanzas, escudos y espadas. A esta fase le siguió el desarrollo de los carros, que al principio fueron vehículos pesados para el uso de los comandantes. La inclusión posterior de radios en las ruedas para aligerarlas, y un bocado y una brida para el caballo, hizo del carro una máquina de guerra ligera que podía aventajar a la infantería enemiga. La tercera fase se centró en el incremento de la movilidad y la velocidad de la caballería. Los asirios, con su conocimiento del armamento de hierro y sus espléndidos jinetes, dominaron la mayoría del mundo civilizado entre el 1200 y el 612 a.C.
Con la introducción del estribo en Asia, aproximadamente en el siglo II a.C., los jinetes eran capaces de obtener mejor estabilidad en la lucha con espada, e hicieron que los carros de guerra quedaran obsoletos. Las unidades de caballería de ataque rápido, que se observaron primero en Egipto y Persia, se convirtieron en las principales fuerzas militares. Con su aparición surgió la necesidad de mejores transportes y sistemas de comunicación. Los persas fueron los primeros en desarrollar una red de carreteras y estaciones de parada para recorrer su vasto imperio, que se extendía desde el Punjab al mar Mediterráneo.


4.Tecnología griega y romana


El Imperio persa de Ciro II el Grande fue derrotado y sucedido por el imperio creado por Alejandro Magno (véase Periodo helenístico). Los griegos fueron los primeros en convertirse en una potencia, a través de sus conocimientos en astilleros y comercio, y mediante su colonización de las costas del Mediterráneo. La derrota de los persas se debió en parte al poder naval griego.
Los persas y los griegos también introdujeron una nueva casta dentro de la división del trabajo: la esclavitud. Durante la edad de oro griega, su civilización dependía de los esclavos en todo lo concerniente al trabajo manual. La mayoría de los sabios estaban de acuerdo en que en las sociedades donde se practicaba la esclavitud los problemas de la productividad se resolvían mediante el incremento del número de trabajadores, antes que por los métodos nuevos de producción o nuevas fuentes energéticas. Debido a esto, los conocimientos teóricos y la enseñanza en Grecia (y posteriormente en Roma) estuvieron muy alejados del trabajo físico y de la fabricación.
Esto no quiere decir que los griegos no desarrollaran nuevas ideas tecnológicas. Arquímedes, Herón de Alejandría, Ctesías y Tolomeo escribieron sobre los principios de sifones, poleas, palancas, manivelas, bombas contra incendios, ruedas dentadas, válvulas y turbinas. Algunas contribuciones prácticas importantes de los griegos fueron el reloj de agua de Ctesías, la dioptra (un instrumento de topografía) de Herón de Alejandría y el tornillo hidráulico de Arquímedes. Del mismo modo, Tales de Mileto mejoró la navegación al introducir métodos de triangulación y Anaximandro dio forma al primer mapa del mundo. No obstante, los avances tecnológicos de los griegos no fueron a la par con sus contribuciones al conocimiento teórico.
El Imperio romano que conquistó y sucedió al de los griegos fue similar en este aspecto. Los romanos, sin embargo, fueron grandes tecnólogos en cuanto a la organización y la construcción. Establecieron una civilización urbana que disfrutó del primer periodo largo de paz en la historia de la humanidad. El primer gran cambio que se produjo en este periodo fue en la ingeniería con la construcción de enormes sistemas de obras públicas. Con el uso de cemento resistente al agua y el principio del arco, los ingenieros romanos construyeron 70.800 km de carreteras a través de su vasto imperio. También construyeron numerosos circos, baños públicos y cientos de acueductos, alcantarillas y puentes; asimismo fueron responsables de la introducción del molino de agua y del posterior diseño de ruedas hidráulicas con empuje superior e inferior, que se usaron para moler grano, aserrar madera y cortar mármol. En el ámbito militar, los romanos avanzaron tecnológicamente con la mejora de armas, como la jabalina y la catapulta (véase Artillería).


5.La edad media


El periodo histórico transcurrido entre la caída de Roma y el renacimiento (aproximadamente del 400 al 1500) se conoce como edad media. En contra de la creencia popular, se produjeron grandes avances tecnológicos en este periodo. Además, las culturas bizantina e islámica que prosperaron en esta época, tuvieron una importante actividad en las áreas de la filosofía natural, el arte, la literatura, la religión, y en particular la cultura islámica aportó numerosas contribuciones científicas, que tendrían gran importancia en el renacimiento europeo. La sociedad medieval se adaptaba fácilmente, y estaba dispuesta a adquirir nuevas ideas y nuevos métodos de producción a partir de cualquier fuente, viniera de las culturas del islam y Bizancio, China, o de los lejanos vikingos.


1.La guerra y la agricultura


En el área de la guerra, se mejoró la caballería como arma militar, con la invención de la lanza y la silla de montar hacia el siglo IV; se desarrolló también la armadura más pesada, la cría de caballos más grandes y la construcción de castillos. La introducción de la ballesta, y más tarde de la técnica de la pólvora desde China, llevó a la fabricación de pistolas, cañones y morteros (a través del desarrollo de la cámara de explosión), reduciendo de este modo la efectividad de los escudos pesados y de las fortificaciones de piedra.
Una de las máquinas más importantes de la época medieval fue el molino, que no sólo incrementó la cantidad de grano molido y de madera aserrada, sino que también favoreció la formación de molineros expertos en manivelas compuestas, levas y otras técnicas de movimiento de máquinas y combinación de sus partes con otros dispositivos. La rueda de hilado, que se introdujo desde la India en el siglo XIII o XIV, mejoró la producción de hilo y la costura de la ropa y se convirtió en una máquina común en el hogar. El hogar, en sí mismo, también se transformó con la inclusión de una chimenea, que ahorraba la madera cada vez más escasa debido a la expansión agrícola. Hacia el año 1000, los excedentes agrícolas, debidos a varias mejoras en el arado, llevaron a un incremento del comercio y al crecimiento de las ciudades. En éstas se desarrollaron las innovaciones arquitectónicas de muchos reinos, para culminar en grandiosas catedrales góticas de altos muros, posibles gracias a los arbotantes.


2.El transporte


Las innovaciones en el transporte durante la edad media ampliaron la difusión de la tecnología a través de grandes áreas. Algunos elementos como la herradura, el árbol de varas (para enjaezar de forma efectiva los caballos a los carros) y el coche de caballos aceleraron el transporte de personas y mercancías. Se produjeron también cambios importantes en la tecnología marina. El desarrollo de la quilla, la vela latina triangular para una mayor maniobrabilidad, y de la brújula magnética (en el siglo XIII) hicieron de los barcos veleros las máquinas más complejas de la época. El príncipe Enrique de Portugal creó una escuela para enseñar a los navegantes cómo usar correctamente estas máquinas. Quizás los estudiantes del príncipe Enrique hicieron más de lo que habían hecho las teorías astronómicas de Copérnico, al cambiar la percepción que tenía la humanidad del mundo (véase Navegación).


3. otros inventos importantes

Imprenta antigua
La imprenta, inventada por Johann Gutenberg en 1450, hizo posible la publicación y circulación masiva de libros. La primera imprenta, derivada de las prensas utilizadas para obtener aceite, empleaba un mecanismo helicoidal para apretar un bloque de impresión contra el papel. Una palanca permitía regular la presión del bloque sobre el papel.
Enciclopedia Encarta
© Microsoft Corporation. Reservados todos los derechos.
Tamaño completo
Otros dos inventos medievales, el reloj y la imprenta, tuvieron gran influencia en todos los aspectos de la vida humana. La invención de un reloj con péndulo en 1286 hizo posible que la gente no siguiera viviendo en un mundo estructurado diariamente por el curso del Sol, y cada año por el cambio de estaciones. El reloj fue además una ayuda inmensa para la navegación, y la medida precisa del tiempo fue esencial para el desarrollo de la ciencia moderna.
La invención de la imprenta, a su vez, provocó una revolución social que no se ha detenido todavía. Los chinos habían desarrollado tanto el papel como la imprenta antes del siglo II d.C., pero esas innovaciones no alcanzaron demasiada expansión en el mundo occidental hasta mucho más tarde. El pionero de la imprenta, el alemán Johann Gutenberg, solucionó el problema del moldeo de tipos móviles en el año 1450. Una vez desarrollada, la imprenta se difundió rápidamente y comenzó a reemplazar a los textos manuscritos. De este modo, la vida intelectual no continuó siendo dominio de la Iglesia y el Estado, y la lectura y la escritura se convirtieron en necesidades de la existencia urbana.


4.LA TECNOLOGÍA EN LA EDAD MODERNA


Al final de la edad media, los sistemas tecnológicos denominados ciudades hacía mucho que eran la característica principal de la vida occidental. En 1600, Londres y Amsterdam tenían poblaciones superiores a 100.000 habitantes, y París duplicaba esa cantidad. Además, los alemanes, los ingleses, los españoles y los franceses comenzaron a desarrollar imperios mundiales. A principios del siglo XVIII, los recursos de capital y los sistemas bancarios estaban lo suficientemente bien establecidos en Gran Bretaña como para iniciar la inversión en las técnicas de producción en serie que satisfarían algunas de esas aspiraciones de la clase media.


1.La Revolución Industrial

Máquina de hilar
La máquina de hilar, introducida por Richard Arkwright en 1768, refleja la tendencia a la automatización característica de la Revolución Industrial. La máquina, impulsada por la rueda motriz situada en la parte inferior, forma el hilo a partir de la fibra y lo tuerce mientras lo enrolla en las bobinas.
Enciclopedia Encarta
Dorling Kindersley
Tamaño completo
La Revolución Industrial comenzó en Inglaterra porque este país tenía los medios técnicos precisos, un fuerte apoyo institucional y una red comercial amplia y variada. Los cambios económicos, incluida una mayor distribución de la riqueza y un aumento del poder de la clase media, la pérdida de importancia de la tierra como fuente fundamental de riqueza y poder, y los negocios oportunistas, contribuyeron a que la Revolución Industrial comenzara en Gran Bretaña. Las primeras fábricas aparecieron en 1740, concentrándose en la producción textil (véase Sistema industrial). En esa época, la mayoría de los ingleses usaban prendas de lana, pero en 100 años las prendas de lana ásperas se vieron desplazadas por el algodón, especialmente tras la invención de la desmotadora de algodón del estadounidense Eli Whitney en 1793. Algunas inventos británicos, como la cardadora y las máquinas de lanzadera volante de John Kay, la máquina de hilar algodón de James Hargreaves y las mejoras en los telares realizadas por Samuel Cromptom fueron integrados con una nueva fuente de potencia: la máquina de vapor, desarrollada en Gran Bretaña por Thomas Newcomen, James Watt y Richard Trevithick, y en Estados Unidos por Oliver Evans. En un periodo de 35 años, desde la década de 1790 hasta la de 1830, se pusieron en marcha en las islas Británicas más de 100.000 telares mecánicos.
Desmotadora de algodón

Desmotadora de algodón
El algodón es una de las fibras más importantes y versátiles de la industria actual; hasta la invención de la desmotadora de algodón en 1793, su producción masiva era demasiado laboriosa para ser rentable. La desmotadora, que separa las fibras de algodón de las semillas y otros cuerpos extraños, permitía a una persona realizar un trabajo que antes requería 50 operarios. El diseño básico de la máquina apenas ha cambiado hasta nuestros días.
Enciclopedia Encarta
THE BETTMANN ARCHIVE
Tamaño completo
Una de las innovaciones más importantes en el proceso de telares fue introducida en Francia en 1801 por Joseph Jacquard. Su telar usaba tarjetas con perforaciones para determinar la ubicación del hilo en la urdimbre. El uso de las tarjetas perforadas inspiró al matemático Charles Babbage para intentar diseñar una máquina calculadora basada en el mismo principio. A pesar de que la máquina no se convirtió nunca en realidad, presagiaba la gran revolución de las computadoras de la última parte del siglo XX.


1.Nuevas prácticas laborales


La Revolución Industrial condujo a un nuevo modelo de división del trabajo, creando la fábrica moderna, una red tecnológica cuyos trabajadores no necesitan ser artesanos y no tienen que poseer conocimientos específicos. Por ello, la fábrica introdujo un proceso de remuneración impersonal basado en un sistema de salarios. Como resultado de los riesgos financieros asumidos por los sistemas económicos que acompañaban a los desarrollos industriales, la fábrica condujo también a los trabajadores a la amenaza constante del despido.
El sistema de fábricas triunfó después de una gran resistencia por parte de los gremios ingleses y de los artesanos, que veían con claridad la amenaza sobre sus ingresos y forma de vida. En la fabricación de mosquetes, por ejemplo, los armeros lucharon contra el uso de partes intercambiables y la producción en serie de rifles. Sin embargo, el sistema de fábricas se convirtió en una institución básica de la tecnología moderna, y el trabajo de hombres, mujeres y niños se convirtió en otra mera mercancía dentro del proceso productivo. El montaje final de un producto (ya sea una segadora mecánica o una máquina de coser) no es el trabajo de una persona, sino el resultado de un sistema integrado y colectivo. Esta división del trabajo en operaciones, que cada vez se especificaba más, llegó a ser la característica determinante del trabajo en la nueva sociedad industrial, con todas las horas de tedio que esto supone.


2.Aceleración de las innovaciones


Al aumentar la productividad agrícola y desarrollarse la ciencia médica, la sociedad occidental llegó a tener gran fe en lo positivo del cambio tecnológico, a pesar de sus aspectos menos agradables. Algunas realizaciones de ingeniería como la construcción del canal de Suez, el canal de Panamá y la torre Eiffel (1889) produjeron orgullo y, en gran medida, asombro. El telégrafo y el ferrocarril interconectaron la mayoría de las grandes ciudades. A finales del siglo XIX, la bombilla (foco) inventada por Thomas Alva Edison comenzó a reemplazar a las velas y las lámparas. En treinta años todas las naciones industrializadas generaban potencia eléctrica para el alumbrado y otros sistemas.
Algunos inventos del siglo XIX y XX, como el teléfono, la radio, el automóvil con motor y el aeroplano sirvieron no sólo para mejorar la vida, sino también para aumentar el respeto universal que la sociedad en general sentía por la tecnología. Con el desarrollo de la producción en serie con cadenas de montaje para los automóviles y para aparatos domésticos, y la invención aparentemente ilimitada de más máquinas para todo tipo de tareas, la aceptación de las innovaciones por parte de los países más avanzados, sobre todo en Estados Unidos, se convirtió no sólo en un hecho de la vida diaria, sino en un modo de vida en sí mismo. Las sociedades industriales se transformaron con rapidez gracias al incremento de la movilidad, la comunicación rápida y a una avalancha de información disponible en los medios de comunicación.
La I Guerra Mundial y la Gran Depresión forzaron un reajuste de esta rápida explosión tecnológica. El desarrollo de los submarinos, armas, acorazados y armamento químico hizo ver más claramente la cara destructiva del cambio tecnológico. Además, la tasa de desempleados en todo el mundo y los desastres provocados por las instituciones capitalistas en la década de 1930 suscitaron en algunos sectores la crítica más enérgica sobre los beneficios que resultaban del progreso tecnológico.
Con la II Guerra Mundial llegó el desarrollo del arma que desde entonces constituye una amenaza general para la vida sobre el planeta: la bomba atómica. El gran programa para fabricar las primeras bombas atómicas durante la guerra, el Proyecto Manhattan, fue el esfuerzo tecnológico más grande y más caro de la historia hasta la fecha. Este programa abrió una época no sólo de armamento de destrucción en masa, sino también de ciencia de alto nivel, con proyectos tecnológicos a gran escala, que a menudo financiaban los gobiernos y se dirigían desde importantes laboratorios científicos. Una tecnología más pacífica surgida de la II Guerra Mundial (el desarrollo de las computadoras, transistores, electrónica y las tendencias hacia la miniaturización) tuvo un efecto mayor sobre la sociedad (véase Microprocesador). Las enormes posibilidades que se ofrecían se fueron convirtiendo rápidamente en realidad; esto trajo consigo la sustitución de la mano de obra por sistemas automatizados y los cambios rápidos y radicales en los métodos y prácticas de trabajo.


2.Logros y beneficios tecnológicos

Torre Eiffel (París)
La torre Eiffel parisiense se construyó en 1889 para la Exposición Universal. El ingeniero francés Alexandre Gustave Eiffel la diseñó como una red de vigas arriostradas que ofrecía una mínima resistencia al viento. Se construyó con unas 6.300 toneladas de hierro forjado, y constituye una obra maestra de la tecnología de hierro.
Enciclopedia Encarta
Hideo Kurihara/Getty Images
Tamaño completo
Dejando a un lado los efectos negativos, la tecnología hizo que las personas ganaran en control sobre la naturaleza y construyeran una existencia civilizada. Gracias a ello, incrementaron la producción de bienes materiales y de servicios y redujeron la cantidad de trabajo necesario para fabricar una gran serie de cosas. En el mundo industrial avanzado, las máquinas realizan la mayoría del trabajo en la agricultura y en muchas industrias, y los trabajadores producen más bienes que hace un siglo con menos horas de trabajo. Una buena parte de la población de los países industrializados tiene un mejor nivel de vida (mejor alimentación, vestimenta, alojamiento y una variedad de aparatos para el uso doméstico y el ocio). En la actualidad, muchas personas viven más y de forma más sana como resultado de la tecnología.
En el siglo XX los logros tecnológicos fueron insuperables, con un ritmo de desarrollo mucho mayor que en periodos anteriores. La invención del automóvil, la radio, la televisión y teléfono revolucionó el modo de vida y de trabajo de muchos millones de personas. Las dos áreas de mayor avance han sido la tecnología médica, que ha proporcionado los medios para diagnosticar y vencer muchas enfermedades mortales, y la exploración del espacio (véase Astronáutica), donde se ha producido el logro tecnológico más espectacular del siglo: por primera vez los hombres consiguieron abandonar y regresar a la biosfera terrestre.


3.Efectos de la tecnología


El balance de la automatización
Vertedero
Los vertederos de basuras, nos recuerdan los efectos negativos del avance tecnológico. En las ciudades, una persona puede llegar a producir una tonelada de residuos al año, una cantidad que desborda muy pronto los vertederos locales, incluso aunque se recicle el 90% de las basuras. A veces, las ciudades recurren a la incineración de residuos o los transportan a otras zonas.
Enciclopedia Encarta
Rafael Macia/Photo Researchers, Inc.
Tamaño completo
El balance de la automatización
El avance tecnológico tiene efectos positivos y negativos en la sociedad. Por ejemplo, los progresos de automatización han mejorado la eficiencia productiva y el control de calidad, y han disminuido los riesgos de accidentes laborales. Sin embargo, también han desaparecido muchos puestos de trabajo, dejando a los trabajadores sin empleo o con la necesidad de adaptarse a las nuevas tecnologías.
Enciclopedia Encarta
Tom McHugh/Photo Researchers, Inc.
Tamaño completo
Durante las últimas décadas, algunos observadores han comenzado a advertir sobre algunos resultados de la tecnología que también poseen aspectos destructivos y perjudiciales. De la década de 1970 a la de 1980, el número de estos resultados negativos ha aumentado y sus problemas han alcanzado difusión pública. Los observadores señalaron, entre otros peligros, que los tubos de escape de los automóviles estaban contaminando la atmósfera, que los recursos mundiales se estaban usando por encima de sus posibilidades, que pesticidas como el DDT amenazaban la cadena alimenticia, y que los residuos minerales de una gran variedad de recursos industriales estaban contaminando las reservas de agua subterránea. En las últimas décadas, se argumenta que el medio ambiente ha sido tan dañado por los procesos tecnológicos que uno de los mayores desafíos de la sociedad moderna es la búsqueda de lugares para almacenar la gran cantidad de residuos que se producen. Véase Lluvia ácida; Contaminación atmosférica; Conservación; Ecología; Capa de ozono; Lluvia radiactiva. Los problemas originados por la tecnología son la consecuencia de la incapacidad de predecir o valorar sus posibles consecuencias negativas. Se seguirán sopesando las ventajas y las desventajas de la tecnología, mientras se aprovechan sus resultados.


4.Alternativas propuestas


El concepto denominado tecnología apropiada, conveniente o intermedia se acepta como alternativa a los problemas tecnológicos de las naciones industrializadas y, lo que es más importante, como solución al problema del desequilibrio social provocado por la transferencia de tecnologías avanzadas a países en vías de desarrollo. Se dice que el carácter arrollador de la tecnología moderna amenaza a ciertos valores, como la calidad de vida, la libertad de elección, el sentido humano de la medida y la igualdad de oportunidades ante la justicia y la creatividad individual. Los defensores de este punto de vista proponen un sistema de valores en el que las personas reconozcan que los recursos de la Tierra son limitados y que la vida humana debe reestructurarse alrededor del compromiso de controlar el crecimiento de la industria, el tamaño de las ciudades y el uso de la energía. La restauración y la renovación de los recursos naturales son los principales objetivos tecnológicos.
Además se ha argumentado que, como la sociedad moderna ya no vive en la época industrial del siglo XIX y principios del XX (y que la sociedad postindustrial es ya una realidad), las redes complejas posibles gracias a la electrónica avanzada harán obsoletas las instituciones de los gobiernos nacionalistas, las corporaciones multinacionales y las ciudades superpobladas.
La tecnología ha sido siempre un medio importante para crear entornos físicos y humanos nuevos. Sólo durante el siglo XX se hizo necesario preguntar si la tecnología destruiría total o parcialmente la civilización creada por el ser humano.


5.Perspectivas


A lo largo del siglo XX la tecnología se extendió desde Europa y Estados Unidos a otras naciones importantes como Japón y la antigua Unión Soviética, pero en ningún caso lo hizo a todos los países del mundo. Muchos de los países de los denominados en vías de desarrollo no han experimentado nunca el sistema de fábricas ni otras instituciones de la industrialización, y muchos millones de personas sólo disponen de la tecnología más básica. La introducción de la tecnología occidental ha llevado a menudo a una dependencia demasiado grande de los productos occidentales. Para la población de los países en vías de desarrollo que depende de la agricultura de subsistencia tiene poca relevancia este tipo de tecnologías. En los últimos años, grupos de ayuda occidentales han intentado desarrollar tecnologías apropiadas, usando las técnicas y materiales de los pueblos indígenas.

ciencia


1.INTRODUCCIÓN


Ciencia (en latín scientia, de scire, ‘conocer’), término que en su sentido más amplio se emplea para referirse al conocimiento sistematizado en cualquier campo, pero que suele aplicarse sobre todo a la organización de la experiencia sensorial objetivamente verificable. La búsqueda de conocimiento en ese contexto se conoce como ‘ciencia pura’, para distinguirla de la ‘ciencia aplicada’ —la búsqueda de usos prácticos del conocimiento científico— y de la tecnología, a través de la cual se llevan a cabo las aplicaciones. (Para más información, véanse los artículos individuales sobre la mayoría de las ciencias mencionadas a lo largo de este artículo.)


2.ORÍGENES DE LA CIENCIA


Los esfuerzos para sistematizar el conocimiento se remontan a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de las cuevas, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico. Los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades —además de numerosas tablas matemáticas— inscritas en caracteres cuneiformes sobre tablillas de arcilla. Otras tablillas que datan aproximadamente del 2000 a.C. demuestran que los babilonios conocían el teorema de Pitágoras, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para tiempos y ángulos (véase Sistema numérico; Numeración).
En el valle del Nilo se han descubierto papiros de un periodo cronológico próximo al de las culturas mesopotámicas que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide. Algunas de las unidades de longitud actuales proceden del sistema de medidas egipcio y el calendario que empleamos es el resultado indirecto de observaciones astronómicas prehelénicas.


3.ORÍGENES DE LA TEORÍA CIENTÍFICA

Pitágoras
Galeno
Pitágoras
Considerado el primer matemático, Pitágoras fundó un movimiento en el sur de la actual Italia, en el siglo VI a.C., que enfatizó el estudio de las matemáticas con el fin de intentar comprender todas las relaciones del mundo natural.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Galeno
El médico griego Galeno vivió durante el siglo II y llevó a cabo numerosos descubrimientos mediante la disección de animales. Demostró que las arterias transportan sangre. Sus estudios dominaron la teoría y la práctica de la medicina en Europa durante 1.400 años.
Enciclopedia Encarta
THE BETTMANN ARCHIVE
Tamaño completo
El conocimiento científico en Egipto y Mesopotamia era sobre todo de naturaleza práctica, sin excesiva sistematización. Uno de los primeros sabios griegos que investigó las causas fundamentales de los fenómenos naturales fue, en el siglo VI a.C., el filósofo Tales de Mileto que introdujo el concepto de que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en disciplina fundamental en toda investigación científica. Los eruditos pitagóricos postulaban una Tierra esférica que se movía en una órbita circular alrededor de un fuego central. En Atenas, en el siglo IV a.C., la filosofía natural jónica y la ciencia matemática pitagórica llegaron a una síntesis en la lógica de Platón y Aristóteles. En la Academia de Platón se subrayaba el razonamiento deductivo y la representación matemática; en el Liceo de Aristóteles primaban el razonamiento inductivo y la descripción cualitativa. La interacción entre estos dos enfoques de la ciencia ha llevado a la mayoría de los avances posteriores.
Arquímedes

Arquímedes
Arquímedes realizó grandes contribuciones a la matemática teórica. Además, es famoso por aplicar la ciencia a la vida diaria. Por ejemplo, descubrió el principio que lleva su nombre mientras se bañaba. También desarrolló máquinas sencillas como la palanca o el tornillo, y las aplicó a usos militares y de irrigación.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno, el matemático, astrónomo y geógrafo Eratóstenes realizó una medida asombrosamente precisa de las dimensiones de la Tierra. El astrónomo Aristarco de Samos propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua. El matemático e inventor Arquímedes sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección.
Sistema de Tolomeo

Sistema de Tolomeo
En el siglo II d.C., Claudio Tolomeo planteó un modelo de Universo con la Tierra en el centro. Cada cuerpo celeste giraba en un pequeño círculo denominado epiciclo, centrado en un punto que giraba a su vez alrededor de la Tierra en un gran círculo denominado deferente. El modelo representaba los movimientos de los cuerpos celestes de una forma bastante precisa, pero no ofrecía una explicación física de ellos. El modelo de Tolomeo fue aceptado durante más de mil años.
Enciclopedia Encarta
Mary Evans Picture Library/Photo Researchers, Inc.
Tamaño completo
Tras la destrucción de Cartago y Corinto por los romanos en el año 146 a.C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d.C. bajo el emperador y filósofo romano Marco Aurelio. El sistema de Tolomeo —una teoría geocéntrica (con centro en la Tierra) del Universo propuesta por el astrónomo Claudio Tolomeo— y las obras médicas del filósofo y médico Galeno se convirtieron en tratados científicos de referencia para las civilizaciones posteriores. Un siglo después surgió la nueva ciencia experimental de la alquimia a partir de la metalurgia. Sin embargo, hacia el año 300, la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia.


4.LA CIENCIA MEDIEVAL Y RENACENTISTA


Brújula china
Los primeros navegantes chinos empleaban brújulas magnéticas como ésta para encontrar su rumbo en mar abierto. Probablemente, las primeras brújulas magnéticas fueron desarrolladas en el siglo X por navegantes chinos y europeos.
Enciclopedia Encarta
National Maritime Museum/Dorling Kindersley
Tamaño completo
Durante la edad media existían seis grupos culturales principales: en lo que respecta a Europa, de un lado el Occidente latino y, de otro, el Oriente griego (o bizantino); en cuanto al continente asiático, China e India, así como la civilización musulmana (también presente en Europa), y, finalmente, en el ignoto continente americano, desligado del resto de los grupos culturales mencionados, la civilización maya. El grupo latino no contribuyó demasiado a la ciencia hasta el siglo XIII; los griegos no elaboraron sino meras paráfrasis de la sabiduría antigua; los mayas, en cambio, descubrieron y emplearon el cero en sus cálculos astronómicos, antes que ningún otro pueblo. En China la ciencia vivió épocas de esplendor, pero no se dio un impulso sostenido. Las matemáticas chinas alcanzaron su apogeo en el siglo XIII con el desarrollo de métodos para resolver ecuaciones algebraicas mediante matrices y con el empleo del triángulo aritmético. Pero lo más importante fue el impacto que tuvieron en Europa varias innovaciones prácticas de origen chino. Entre ellas estaban los procesos de fabricación del papel y la pólvora, el uso de la imprenta y el empleo de la brújula en la navegación. Las principales contribuciones indias a la ciencia fueron la formulación de los numerales denominados indoarábigos, empleados actualmente, y la modernización de la trigonometría. Estos avances se transmitieron en primer lugar a los árabes, que combinaron los mejores elementos de las fuentes babilónicas, griegas, chinas e indias. En el siglo IX Bagdad, situada a orillas del río Tigris, era un centro de traducción de obras científicas y en el siglo XII estos conocimientos se transmitieron a Europa a través de España, Sicilia y Bizancio.
Nicolás Copérnico

Nicolás Copérnico
El astrónomo polaco Nicolás Copérnico revolucionó la ciencia al postular que la Tierra y los demás planetas giran en torno a un Sol estacionario. Su teoría heliocéntrica (el Sol como centro) fue desarrollada en los primeros años de la década de 1500, pero sólo se publicó años después. Se oponía a la teoría de Tolomeo, entonces en boga, según la cual el Sol y los planetas giraban alrededor de una Tierra fija. Al principio, Copérnico dudó en publicar sus hallazgos porque temía las críticas de la comunidad científica y religiosa. A pesar de la incredulidad y rechazo iniciales, el sistema de Copérnico pasó a ser el modelo del Universo más ampliamente aceptado a finales del siglo XVII.
Enciclopedia Encarta
American Stock/Archive Photos
Tamaño completo
En el siglo XIII la recuperación de obras científicas de la antigüedad en las universidades europeas llevó a una controversia sobre el método científico. Los llamados realistas apoyaban el enfoque platónico, mientras que los nominalistas preferían la visión de Aristóteles. En las universidades de Oxford y París estas discusiones llevaron a descubrimientos de óptica y cinemática que prepararon el camino para Galileo y para el astrónomo alemán Johannes Kepler.
La gran epidemia de peste y la guerra de los Cien Años interrumpieron el avance científico durante más de un siglo, pero en el siglo XVI la recuperación ya estaba plenamente en marcha. En 1543 el astrónomo polaco Nicolás Copérnico publicó De revolutionibus orbium caelestium (Sobre las revoluciones de los cuerpos celestes), que conmocionó la astronomía. Otra obra publicada ese mismo año, Humani corporis fabrica libri septem (Siete libros sobre la estructura del cuerpo humano), del anatomista belga Andrés Vesalio, corrigió y modernizó las enseñanzas anatómicas de Galeno y llevó al descubrimiento de la circulación de la sangre. Dos años después, el libro Ars magna (Gran arte), del matemático, físico y astrólogo italiano Gerolamo Cardano, inició el periodo moderno en el álgebra con la solución de ecuaciones de tercer y cuarto grado.


5.LA CIENCIA MODERNA

Galileo
Isaac Newton
Galileo
El físico y astrónomo italiano Galileo marcó el rumbo de la física moderna al insistir en que la Tierra y los astros se regían por un mismo conjunto de leyes. Defendió la antigua idea de que la Tierra giraba en torno al Sol, y puso en duda la creencia igualmente antigua de que la Tierra era el centro del Universo.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Isaac Newton
La obra de Isaac Newton representa una de las mayores contribuciones a la ciencia realizadas nunca por un solo individuo. Entre otras cosas, Newton dedujo la ley de la gravitación universal, inventó el cálculo infinitesimal y realizó experimentos sobre la naturaleza de la luz y el color.
Enciclopedia Encarta
Rex Features, Ltd.
Tamaño completo
Esencialmente, los métodos y resultados científicos modernos aparecieron en el siglo XVII gracias al éxito de Galileo al combinar las funciones de erudito y artesano. A los métodos antiguos de inducción y deducción, Galileo añadió la verificación sistemática a través de experimentos planificados, en los que empleó instrumentos científicos de invención reciente como el telescopio, el microscopio o el termómetro. A finales del siglo XVII se amplió la experimentación: el matemático y físico Evangelista Torricelli empleó el barómetro; el matemático, físico y astrónomo holandés Christiaan Huygens usó el reloj de péndulo; el físico y químico británico Robert Boyle y el físico alemán Otto von Guericke utilizaron la bomba de vacío.
Antoine Laurent de Lavoisier
John Dalton

Antoine Laurent de Lavoisier
El químico francés Antoine Laurent de Lavoisier está considerado como el padre de la química moderna. Se interesó sobre todo por los experimentos que permitían medir la materia.
Enciclopedia Encarta
Science Source/Photo Researchers, Inc.
Tamaño completo
John Dalton
A John Dalton se le conoce sobre todo por desarrollar la teoría atómica de los elementos y compuestos. Mientras investigaba la naturaleza de la atmósfera en los primeros años del siglo XIX, Dalton dedujo la estructura del dióxido de carbono y propuso la teoría de que cada molécula está compuesta por un número definido de átomos. Postuló que todos los átomos de un mismo elemento son idénticos entre sí y diferentes de los átomos de cualquier otro elemento. Dalton fue el primer científico en clasificar los elementos por su peso atómico, con lo que preparó el terreno para una revolución del pensamiento científico. Realizó numerosas contribuciones en el campo de la meteorología y en 1794 fue el primero en describir la ceguera cromática o daltonismo.
Enciclopedia Encarta
Photo Researchers, Inc.
Tamaño completo
La culminación de esos esfuerzos fue la formulación de la ley de la gravitación universal, expuesta en 1687 por el matemático y físico británico Isaac Newton en su obra Philosophiae naturalis principia mathematica (Principios matemáticos de la filosofía natural). Al mismo tiempo, la invención del cálculo infinitesimal por parte de Newton y del filósofo y matemático alemán Gottfried Wilhelm Leibniz sentó las bases de la ciencia y las matemáticas actuales.
Michael Faraday

Michael Faraday
Michael Faraday, uno de los científicos más eminentes del siglo XIX, realizó importantes contribuciones a la física y la química. Descubrió el fenómeno conocido como inducción electromagnética al observar que en un cable que se mueve en un campo magnético aparece una corriente. Este descubrimiento contribuyó al desarrollo de las ecuaciones de Maxwell y llevó a la invención del generador eléctrico. Entre los anteriores trabajos de Faraday en química figuran el enunciado de las leyes de la electrólisis y el descubrimiento del benceno.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Los descubrimientos científicos de Newton y el sistema filosófico del matemático y filósofo francés René Descartes dieron paso a la ciencia materialista del siglo XVIII, que trataba de explicar los procesos vitales a partir de su base físico-química. La confianza en la actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución Francesa de 1789. El químico francés Antoine Laurent de Lavoisier publicó el Tratado elemental de química en 1789 e inició así la revolución de la química cuantitativa.
Charles Darwin

Charles Darwin
Darwin estuvo influenciado por el geólogo Adam Sedgwick y el naturalista John Henslow en el desarrollo de su teoría de la selección natural, que habría de convertirse en el concepto básico de la teoría de la evolución. La teoría de Darwin mantiene que los efectos ambientales conducen al éxito reproductivo diferencial en individuos y grupos de organismos. La selección natural tiende a promover la supervivencia de los más aptos. Esta teoría revolucionaria se publicó en 1859 en el famoso tratado El origen de las especies por medio de la selección natural.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Los avances científicos del siglo XVIII prepararon el camino para el siguiente, llamado a veces “siglo de la correlación” por las amplias generalizaciones que tuvieron lugar en la ciencia. Entre ellas figuran la teoría atómica de la materia postulada por el químico y físico británico John Dalton, las teorías electromagnéticas de Michael Faraday y James Clerk Maxwell, también británicos, o la ley de la conservación de la energía, enunciada por el físico británico James Prescott Joule y otros científicos.
Max Planck

Max Planck
Max Planck se alejó radicalmente de las ideas clásicas al proponer la teoría de que la energía se propaga en cantidades discretas llamadas cuantos. Antes del trabajo de Planck sobre la radiación del cuerpo negro, se creía que la energía era continua, pero muchos fenómenos resultaban así inexplicables. Mientras trabajaba en los aspectos matemáticos de los fenómenos de radiación observados, Planck se dio cuenta de que la cuantización de la energía podía explicar el comportamiento de la luz. Sus revolucionarios trabajos sentaron las bases de la teoría cuántica.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
La teoría biológica de alcance más global fue la de la evolución, propuesta por Charles Darwin en su libro El origen de las especies, publicado en 1859, que provocó una polémica en la sociedad —no sólo en los ámbitos científicos— tan grande como la obra de Copérnico. Sin embargo, al empezar el siglo XX el concepto de evolución ya se aceptaba de forma generalizada, aunque su mecanismo genético continuó siendo discutido.
Albert Einstein

Albert Einstein
Albert Einstein, autor de las teorías general y restringida de la relatividad, es considerado uno de los mayores científicos de todos los tiempos. No se conoce tanto su compromiso social. En la grabación, Einstein habla de Gandhi y elogia la no violencia.
Enciclopedia Encarta
Rex Features, Ltd./Cortesía de Gordon Skene Sound Collection
Tamaño completo
Mientras la biología adquiría una base más firme, la física se vio sacudida por las inesperadas consecuencias de la teoría cuántica y la de la relatividad. En 1927 el físico alemán Werner Heisenberg formuló el llamado principio de incertidumbre, que afirma que existen límites a la precisión con que pueden determinarse a escala subatómica las coordenadas de un suceso dado. En otras palabras, el principio afirmaba la imposibilidad de predecir con precisión que una partícula, por ejemplo un electrón, estará en un lugar determinado en un momento determinado y con una velocidad determinada. La mecánica cuántica no opera con datos exactos, sino con deducciones estadísticas relativas a un gran número de sucesos individuales.


6.LA CIENCIA EN ESPAÑA Y LATINOAMÉRICA


Carl von Linneo
Aunque era un médico en ejercicio, Carl von Linneo tenía un profundo interés por la botánica y desarrolló un sistema para clasificar las plantas en el que utilizaba un método binomial de nomenclatura científica. Su sistema de clasificación simplificaba mucho la manera en que se nombraban las plantas y los animales, organizándolos en grupos significativos basados en sus similitudes físicas. Linneo también describió y clasificó cierto número de especies animales y sus descripciones y clasificaciones fueron tan precisas que muchas de ellas han permanecido invariables hasta nuestros días.
Enciclopedia Encarta
Culver Pictures
Tamaño completo
Los comienzos de la ciencia española se remontan (dejando aparte el primitivo saber de san Isidoro de Sevilla) a la civilización hispanoárabe y sobre todo a la gran escuela astronómica de Toledo del siglo XI encabezada por al-Zarqalluh (conocido por Azarquiel en la España medieval). Después de la conquista de la ciudad de Toledo por el rey Alfonso VI en 1085, comenzó un movimiento de traducción científica del árabe al latín, promovido por el arzobispo Raimundo de Toledo (véase Escuela de traductores de Toledo). Este movimiento continuó bajo el patrocinio de Alfonso X el Sabio y los astrónomos de su corte (entre los que destacó el judío Isaac ibn Cid); su trabajo quedó reflejado en los Libros del saber de astronomía y las Tablas alfonsíes, tablas astronómicas que sustituyeron en los centros científicos de Europa a las renombradas Tablas toledanas de Azarquiel.
Lecturas adicionales
Lectura adicional
La ciencia española a comienzos del siglo XX
A comienzos del siglo XX la ciencia española experimentó un gran avance. Prueba de ello fue la relación que se estableció entre la Junta para Ampliación de Estudios y la Fundación Rockefeller, que culminó con la creación de un nuevo y moderno laboratorio de física y química. En este fragmento se repasa la historia de los laboratorios de física y química fundados por la Junta para Ampliación de Estudios, hasta el inicio de las negociaciones de la Junta con la Fundación Rockefeller.
Abrir Lectura adicional
En la primera mitad del siglo XVI, España participó en el movimiento de renovación científica europea, en el que intervinieron de forma destacada Juan Valverde de Amusco, seguidor de Andrés Vesalio, y la escuela de los calculatores —promotores de la renovación matemática y física—, a la que pertenecían Pedro Ciruelo, Juan de Celaya y Domingo de Soto. El descubrimiento de América estimuló avances, tanto en historia natural (con José de Acosta y Gonzalo Fernández de Oviedo) como en náutica (con Pedro de Medina, Martín Cortés y Alonso de Santa Cruz).
Después de que Felipe II prohibiera estudiar en el extranjero, la ciencia española entró en una fase de decadencia y neoescolasticismo de la cual no saldría hasta finales del siglo XVII, con el trabajo de los llamados novatores. Este grupo promovía semiclandestinamente las nuevas ideas de Newton y William Harvey, y a él pertenecían, entre otros, Juan Caramuel y Lobkowitz, Juan de Cabriada y Antonio Hugo de Omerique, cuya obra Analysis Geometrica (1698) atrajo el interés de Newton. En la misma época, desde Nueva España, Diego Rodríguez comentó los hallazgos de Galileo.
Santiago Ramón y Cajal

Santiago Ramón y Cajal
El histólogo español Santiago Ramón y Cajal obtuvo el Premio Nobel de Fisiología y Medicina en 1906. Pionero en la investigación de la estructura fina del sistema nervioso, Cajal fue galardonado por haber aislado las células nerviosas próximas a la superficie del cerebro.
Enciclopedia Encarta
© The Nobel Foundation
Tamaño completo
El sistema newtoniano, todavía prohibido por la Iglesia, se difundió ampliamente en el mundo hispano del siglo XVIII, a partir de Jorge Juan y Antonio de Ulloa (socios del francés Charles de La Condamine en su expedición geodésica a los Andes) en la península Ibérica, José Celestino Mutis en Nueva Granada y Cosme Bueno en Perú.
El otro pilar de la modernización científica de la Ilustración fue Linneo, cuya nomenclatura binomial fascinó a toda una generación de botánicos europeos, estimulando nuevas exploraciones. En España, Miguel Barnades y más tarde sus discípulos Casimiro Gómez Ortega y Antonio Palau Verdera enseñaron la nueva sistemática botánica. El siglo XVIII fue la época de las expediciones botánicas y científicas al Nuevo Mundo, entre las que destacaron la de Mutis (corresponsal de Linneo) a Nueva Granada, la de Hipólito Ruiz y José Pavón a Perú, la de José Mariano Mociño y Martín de Sessé a Nueva España, y la de Alejandro Malaspina alrededor del globo. También en los territorios americanos la ciencia floreció en instituciones como el Real Seminario de Minería de México, el Observatorio Astronómico de Bogotá o el Anfiteatro Anatómico de Lima.
Severo Ochoa

Severo Ochoa
El bioquímico español Severo Ochoa obtuvo en 1959 el Premio Nobel de Fisiología y Medicina. Fue el primero en sintetizar un ácido nucleico.
Enciclopedia Encarta
© The Nobel Foundation
Tamaño completo
Las Guerras Napoleónicas y de Independencia interrumpieron el avance de la ciencia tanto en la península Ibérica como en Latinoamérica. En España la recuperación fue muy lenta; la vida científica se paralizó prácticamente hasta la aparición de nuevas ideas —el darwinismo en primer lugar— como secuela de la revolución de 1868 y la I República. En esta renovación científica desempeñó un papel fundamental el neurólogo Santiago Ramón y Cajal, primer premio Nobel español (en 1906 compartió el Premio Nobel de Fisiología y Medicina con el médico italiano Camillo Golgi por sus descubrimientos sobre la estructura del sistema nervioso); también intervinieron José Rodríguez de Carracido en química, Augusto González de Linares en biología, José Macpherson en geología y Zoel García Galdeano en matemáticas. En América Latina pueden referirse como representativas de la renovación científica del siglo XIX una serie de instituciones positivistas: en México, la Sociedad de Historia Natural (1868), la Comisión Geográfico-Exploradora (1877) o la Comisión Geológica (1886); en Argentina, el Observatorio Astronómico (1882), el Museo de Ciencias Naturales (1884), la Sociedad Científica Argentina (1872), el Observatorio de Córdoba (1870), dirigido por el estadounidense Benjamin Gould, y la Academia de las Ciencias de Córdoba (1874); por último en Brasil, la Escuela de Minas de Ouro Preto, el Servicio Geológico de São Paulo y el Observatorio Nacional de Río de Janeiro.
Gracias al empuje que el Premio Nobel de Ramón y Cajal dio a la ciencia en general, en 1907 el gobierno español estableció la Junta para la Ampliación de Estudios para fomentar el desarrollo de la ciencia, creando becas para el extranjero y, algo más tarde, una serie de laboratorios. Cuando Pío del Río Hortega se instaló en el laboratorio de histología establecido por la Junta en la Residencia de Estudiantes de Madrid, se convirtió en el primer investigador profesional en la historia de la ciencia española. El centro de innovación en ciencias físicas fue el Instituto Nacional de Física y Química de Blas Cabrera, que a finales de la década de 1920 recibió una beca de la Fundación Rockefeller para construir un nuevo y moderno edificio. Allí trabajaron Miguel Ángel Catalán, que realizó importantes investigaciones en espectrografía, y el químico Enrique Moles. En matemáticas el centro innovador fue el Laboratorio Matemático de Julio Rey Pastor, cuyos discípulos ocuparon prácticamente la totalidad de cátedras de matemáticas de España. Muchos de ellos fueron becados en Italia con Tullio Levi-Civita, Vito Volterra, Federigo Enriques y otros miembros de la gran escuela italiana, cuyo manejo del cálculo tensorial les había asociado con la relatividad general de Einstein. Rey Pastor fue un impulsor de la visita que Einstein realizó a España en 1923, en la que el físico alemán fue recibido sobre todo por matemáticos, ya que la física estaba mucho menos desarrollada. En biomedicina, además de la neurohistología, adquirió relevancia la fisiología, dividida en dos grupos: el de Madrid, regido por Juan Negrín, quien formó al futuro premio Nobel Severo Ochoa, y el de Barcelona, dirigido por August Pi i Sunyer. Durante la década de 1920 ambos grupos trabajaron en la acción química de las hormonas, sobre todo de la adrenalina.
En América Latina la fisiología, al igual que en España, ocupaba el liderazgo en las ciencias biomédicas. Los argentinos Bernardo Houssay y Luis Leloir ganaron el Premio Nobel en 1947 y 1970 respectivamente; fueron los primeros otorgados a científicos latinoamericanos por trabajos bioquímicos. En física, distintos países consideraron que la física nuclear era el camino más práctico hacia la modernización científica, debido a la facilidad para obtener aceleradores de partículas de países europeos o de Norteamérica. No obstante, la física nuclear comenzó, por su mínimo coste, con el estudio de los rayos cósmicos. En la década de 1930, los brasileños Marcello Damy de Souza y Paulus Aulus Pompéia descubrieron el componente penetrante o ‘duro’ de los rayos cósmicos; en 1947 César Lattes, investigando en el Laboratorio de Física Cósmica de Chacaltaya (Bolivia), confirmó la existencia de los piones (véase Física: Partículas elementales). También la genética resultó ser un campo de investigación fructífero en América Latina. En 1941 el genetista estadounidense de origen ucraniano Theodosius Dobzhansky emprendió el primero de sus viajes a Brasil donde formó a toda una generación de genetistas brasileños en la genética de poblaciones. Su objetivo era estudiar las poblaciones naturales de Drosophila en climas tropicales para compararlas con las poblaciones de regiones templadas que ya había investigado. Descubrió que las poblaciones tropicales estaban dotadas de mayor diversidad genética que las templadas y, por lo tanto, pudieron ocupar más ‘nichos’ ecológicos que éstas.
Tanto en España como en América Latina la ciencia del siglo XX ha tenido dificultades con los regímenes autoritarios. En la década de 1960 se produjo en Latinoamérica la llamada ‘fuga de cerebros’: en Argentina, por ejemplo, la Facultad de Ciencias Exactas de la Universidad de Buenos Aires perdió más del 70% del profesorado debido a las imposiciones del gobierno contra las universidades. Bajo la dictadura militar de la década de 1980, los generales expulsaron de este país a los psicoanalistas, y el gobierno apoyó una campaña contra la ‘matemática nueva’ en nombre de una idea mal entendida de la matemática clásica. En Brasil, bajo la dictadura militar de la misma época, un ministro fomentó la dimisión de toda una generación de parasitólogos del Instituto Oswaldo Cruz, dando lugar a lo que se llamó ‘la masacre de Manguinhos’.


7.COMUNICACIÓN CIENTÍFICA


A lo largo de la historia, el conocimiento científico se ha transmitido fundamentalmente a través de documentos escritos, algunos de los cuales tienen una antigüedad de más de 4.000 años. Sin embargo, de la antigua Grecia no se conserva ninguna obra científica sustancial del periodo anterior a los Elementos del geómetra Euclides (alrededor del 300 a.C.). De los tratados posteriores escritos por científicos griegos destacados sólo se conservan aproximadamente la mitad. Algunos están en griego, mientras que en otros casos se trata de traducciones realizadas por eruditos árabes en la edad media. Las escuelas y universidades medievales fueron los principales responsables de la conservación de estas obras y del fomento de la actividad científica.
Sin embargo, desde el renacimiento esta labor ha sido compartida por las sociedades científicas; la más antigua de ellas, que todavía existe, es la Accademia nazionale dei Lincei (a la que perteneció Galileo), fundada en 1603 para promover el estudio de las ciencias matemáticas, físicas y naturales. Ese mismo siglo, el apoyo de los gobiernos a la ciencia llevó a la fundación de la Royal Society de Londres (1660) y de la Academia de Ciencias de París (1666). Estas dos organizaciones iniciaron la publicación de revistas científicas, la primera con el título de Philosophical Transactions y la segunda con el de Mémoires.
Durante el siglo XVIII otras naciones crearon academias de ciencias. En Estados Unidos, un club organizado en 1727 por Benjamin Franklin se convirtió en 1769 en la Sociedad Filosófica Americana. En 1780 se constituyó la Academia de las Artes y las Ciencias de América, fundada por John Adams, el segundo presidente estadounidense. En 1831 se reunió por primera vez la Asociación Británica para el Desarrollo de la Ciencia, seguida en 1848 por la Asociación Americana para el Desarrollo de la Ciencia y en 1872 por la Asociación Francesa para el Desarrollo de la Ciencia. Estos organismos nacionales editan respectivamente las publicaciones Nature, Science y Compte-Rendus. El número de publicaciones científicas creció tan rápidamente en los primeros años del siglo XX que el catálogo Lista mundial de publicaciones científicas periódicas editadas en los años 1900-1933 ya incluía unas 36.000 entradas en 18 idiomas. Muchas de estas publicaciones son editadas por sociedades especializadas dedicadas a ciencias concretas.
Desde finales del siglo XIX la comunicación entre los científicos se ha visto facilitada por el establecimiento de organizaciones internacionales, como la Oficina Internacional de Pesas y Medidas (1875) o el Consejo Internacional de Investigación (1919). Este último es una federación científica subdividida en uniones internacionales para cada una de las ciencias. Cada pocos años, las uniones celebran congresos internacionales, cuyos anales suelen publicarse. Además de las organizaciones científicas nacionales e internacionales, muchas grandes empresas industriales tienen departamentos de investigación, de los que algunos publican de forma regular descripciones del trabajo realizado o envían informes a las oficinas estatales de patentes, que a su vez editan resúmenes en boletines de publicación periódica.


8.CAMPOS DE LA CIENCIA


Originalmente el conocimiento de la naturaleza era en gran medida la observación e interrelación de todas las experiencias, sin establecer divisiones. Los eruditos pitagóricos sólo distinguían cuatro ciencias: aritmética, geometría, música y astronomía. En la época de Aristóteles, sin embargo, ya se reconocían otros campos: mecánica, óptica, física, meteorología, zoología y botánica. La química permaneció fuera de la corriente principal de la ciencia hasta la época de Robert Boyle, en el siglo XVII, y la geología sólo alcanzó la categoría de ciencia en el siglo XVIII. Para entonces el estudio del calor, el magnetismo y la electricidad se había convertido en una parte de la física. Durante el siglo XIX los científicos reconocieron que las matemáticas puras se distinguían de las otras ciencias por ser una lógica de relaciones cuya estructura no depende de las leyes de la naturaleza. Sin embargo, su aplicación a la elaboración de teorías científicas ha hecho que se las siga clasificando como ciencia.
Las ciencias naturales puras suelen dividirse en ciencias físicas y químicas, y ciencias de la vida y de la Tierra. Las principales ramas del primer grupo son la física, la astronomía y la química, que a su vez se pueden subdividir en campos como la mecánica o la cosmología. Entre las ciencias de la vida se encuentran la botánica y la zoología; algunas subdivisiones de estas ciencias son la fisiología, la anatomía o la microbiología. La geología es una rama de las ciencias de la Tierra.
Sin embargo, todas las clasificaciones de las ciencias puras son arbitrarias. En las formulaciones de leyes científicas generales se reconocen vínculos entre las distintas ciencias. Se considera que estas relaciones son responsables de gran parte del progreso actual en varios campos de investigación especializados, como la biología molecular y la genética. Han surgido varias ciencias interdisciplinares, como la bioquímica, la biofísica, las biomatemáticas o la bioingeniería, en las que se explican los procesos vitales a partir de principios físico-químicos. Los bioquímicos, por ejemplo, sintetizaron el ácido desoxirribonucleico (ADN); la cooperación de biólogos y físicos llevó a la invención del microscopio electrónico, que permite el estudio de estructuras poco mayores que un átomo. Se prevé que la aplicación de estos métodos interdisciplinares produzca también resultados significativos en el terreno de las ciencias sociales y las ciencias de la conducta.
Las ciencias aplicadas incluyen campos como la aeronáutica, la electrónica, la ingeniería y la metalurgia —ciencias físicas aplicadas— o la agronomía y la medicina —ciencias biológicas aplicadas. También en este caso existe un solapamiento entre las ramas. Por ejemplo, la cooperación entre la iatrofísica (una rama de la investigación médica basada en principios de la física) y la bioingeniería llevó al desarrollo de la bomba corazón-pulmón empleada en la cirugía a corazón abierto y al diseño de órganos artificiales como cavidades y válvulas cardiacas, riñones, vasos sanguíneos o la cadena de huesecillos del oído interno. Este tipo de avances suele deberse a las investigaciones de especialistas procedentes de diversas ciencias, tanto puras como aplicadas. La relación entre teoría y práctica es tan importante para el avance de la ciencia en nuestros días como en la época de Galileo. Véase también Filosofía de la ciencia.